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A Numerical Absorbing Boundary Condition

for Finite Difference and Finite Element

Analysis of Open Periodic Structures
Amir Boag and Raj Mittra

Abstract—In this paper we present a novel approach to deriving

local boundary conditions, that can be employed in conjunction

with the Finite Difference/Finite Element Methods (FD/FEM)

to solve electromagnetic scattering and radiation problems in-

volving periodic structures. The key step in this approach is to
derive linear relationships that link the value of the field at a

boundary grid point to those at the neighboring points. These
linear relationships are identically satisfied not only by all of the
propagating Floquet modes bnt by a few of the leading evanescent
ones as well. They can thus be used in lieu of absorbing boundary
conditions (ABCS) in place of the usual FD/FEM equations for
the boundary points. Guidelines for selecting the orders of the
evanescent Floquet modes to be absorbed are given in the paper.
The present approach not only provides a simple way to derive

an accurate boundary condition for mesh truncation, but also
preserves the banded structure of the FD/FEM matrices. The

accuracy of the proposed method is verified by using an internal

check and by comparing the numerical results with the analytic

solution for perfectly conducting strip gratings.

I. INTRODUCTION

A NALYSIS of electromagnetic scattering and radiation

by relatively simple periodic structures is conveniently

formulated by using such techniques as the Method of Mo-

ments (MoM) [1], or the Current Model Method [2], where

the radiation condition is inherently satisfied. However, the

Finite Difference/Finite Element Methods (FD/FEM) are often

preferred over the MoM approach for problems involving

inhomogeneous materials or complex geometries. The use of

these methods for periodic structures requires one to couple,

explicitly, the FD/FEM computational domain to the un-

bounded free space external to the FD/FEM mesh region. The

FD/FEM solution can either be matched to the Floquet mode

expansion [3], or be combined with the MoM to satisfy the

radiation condition [4], Both ways lead to non-local boundary

conditions that are exact, albeit at the expense of spoiling the

sparsity of the matrices generated in these formulations,

The local type of boundary conditions conventionally em-

ployed in the FD/FEM analysis of non-periodic structures such

as Bayliss-Turkel [5] and Engquist-Majda [6], are not very

well-suited for periodic geometries. Typically, the periodic

structures of interest have cell sizes that are either smatler

than, or comparable to, the wavelength of the illuminating
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field. Thus, the field radiated or scattered by such a structure

consists of a limited number of propagating and an infinite

series of evanescent Floquet modes. For waveguide problems,

Bayliss and Turkel [7] have proposed a boundary condition

designed to absorb all of the propagating waveguide modes.

At any finite distance away from the inhomogeneous region,

only a typically small number of the dominant evanescent

modes produce a non-negligible contribution. In this paper,

we introduce a numerical absorbing boundary condition that

effects a complete absorption of all of the significant Floquet

modes impinging upon the boundary, including both the

propagating and the dominant evanescent modes. Using this

requirement as the specification, we go on to derive linear

relationships that link the field values at the boundary grid

points to those of their neighbors. This procedure differs

from the classical approaches to deriving the local boundary

conditions, since in this method only the field values at the

prescribed grid points are used. In this respect, it is somewhat

similar to the measured equation of invariance (MEI) boundary

condition [8]. However, as in [7], and in contrast to the MEI

method, the present method uses the Floquet modes which

depend only upon the periodicity and the excitation, and not

on the geometry of the periodic element. This has an important

advantage of using simple and analytically-known functions,

and eliminating the need to carry out the surface integrations

needed in other approaches.

The two-dimensional (2D), transverse magnetic (TM) po-

larization case is presented in this paper to illustrate the

application of the proposed method, Because of space limi-

tations, the dual case of transverse electric (TE) polarization,

as well as the extension to the three-dimensional (3D) cases,

will be deferred until forthcoming publications.

II. FORMULATION

We consider a two-dimensional (2D) periodic structure

whose geometry and the relevant coordinate system is depicted

in Fig. 1. The structure is periodic along the x-axis, its period

is d, and it is uniform along the y-axis. The excitation is

TM (transverse-magnetic relative to the y-axis) and quasi-

periodic, with a constant phase shift of kd sin 00 between

neighboring unit cells. Here, k is the free space wavenumber,

and 00 is the scan angle in the phased array problem and

the angle of incidence in the grating scattering case. The

harmonic time dependence e~ut is implicit. It is well-known
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Fig. 1. The problem geomet~ and an arrangement of grid points for deriving the NABC.

that the problem domain can be reduced to a single unit cell

by introducing the phase shift walls. We consider the problem

of truncating the domain of discretization in the positive z-

direction at a distance z = h. (Truncation of the domain in the

negative z direction can be treated as a mirror image of the

problem discussed in this Section.) It is assumed that all of

the inhomogeneities are confined within the region z < z~~~.

A procedure for truncating the mesh at the boundary .z = h

by using a numerical absorbing boundary condition (NABC)

will be presented below. The NABC provides the requisite

equations in the FD/FEM formulation that serve to replace the

corresponding equations at the grid points on the boundary

~ = h. The fields in the homogeneous region z > ,zmaX CaU

be expressed as a superposition of outgoing Floquet modes

derivable from the y-component of the electric field Ev, which

is given by

n.—m

where

(1)

Eyn = ~–~(~nnx+k..z) (2)

is the electric field of the nth Floquet mode and an denotes

its amplitude. In (2),

and

(3)

are, respectively, the z and z components of the wavevector

of the nth Floquet mode.

In the proposed procedure, we derive a linear relationship

between the values of the field at a sets of grid points that are

located on or near the truncation boundary. Consider a set of

L points ri with i = 1,.. ., L. A possible arrangement of the

points for the case of L = 6, that is suitable for a rectangular

mesh, is shown in Fig. 1. Ideally, we would like to find the

coefficients c~, with i = 1, ..., L, such that they satisfy the

relationship

&w) =o (5)

Since in conventional phased arrays, and in frequency selective

surface (FSS) applications, the period d is typically less than

~, the higher-order Floquet modes are expected to be highly

evanescent. Thus, we can effectively limit our attention to the

L – 1 modes of orders n = Nl, . . . ,Nz, where Nz – N1 =

L – 2, that suffer from the least attenuation. The requirement

that (5) be satisfied for these L – 1 modes can be expressed

in the matrix form

Uc=o (6)

where c is an L-element column vector of the sought-for

coefficients and

[

Ey,N, (rl) . . . Ey,N1(r~)

u= : “.. :

!

(7)

EV,N, (rl) . . . EV,N2 (r~)

is a L – 1 by L matrix of the values of the L – 1 selected

modes at the L points. Clearly, one of the components of c

can be chosen arbitrarily. Thus, if we let c1 = 1, the solution
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for c can be written as

c=
[
_wl.lv Ix
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(8)

where v is the first column of U, and W is a square L – 1

by L – 1 matrix containing L – 1 last columns of U.

In general, this procedure can be repeated for every point on

the boundary. If the grid in the layer adjacent to the boundary

is uniform, the same coefficients c can be used for all the

boundary points. In the uniform grid case, the NABC can be

further improved by using the ‘discrete’ Floquet modes with

the corrected dispersion relation

I%,n = ~acos (2 - (kA)2/2 - cos(kznA)),

Re{k,~} >0, Im{kz~} <0 (9)

in place of (4), where A denotes the mesh size. With this

modification, a complete absorption of all of the L – 1

Floquet modes under consideration will be guaranteed. Note

that dispersion relation (9) was derived by substituting Floquet

mode expression (2) into the central difference approximation

of the Hehnholtz equation. It can be easily modified to accom-

modate a rectangular mesh or an alternative discretization of

Maxwell’s equations on a regular grid.

III. NUMERICAL RESULTS

The formulation presented in the preceding section has

been implemented in a finite-difference computer program.

For the sake of illustrating the application of the proposed

method, we consider a perfectly conducting strip grating,

whose geometry, and that of the coordinate system used, are

depicted in Fig. 2. The grating is illuminated by a plane wave

E~ = e–~~tz ‘in 0“+’ ‘Os‘“l. Our objective is to determine the

scattered field 13; . The excitation is provided by imposing the

Dirichlet boundary condition “E; = –E~ on the perfectly

conducting surface of the strip. The solution domain is trtm-

cated at z = +h. The accuracy of the proposed method is

verified by comparing our numerical results with the analytic

solution. The error in the conservation of the power flow along

the z axis, defined in [2],. also serves as an internal accuracy

check.

The first example considered is that of a grating with a

period d = 0.8A, and a strip width of w = 0.4A, illuminated

by a plane wave incident at an angle 00 = 0°. This problem

has been employed to test various numerical methods [9]

against the analytic solution derivable by using the Wiener-

Hopf technique [10]. Before proceeding to the solution of

the scattering problem, it would be desirable to examine

the accuracy of the NABC compared to that of the FD

discretization of the Helmholtz equation. Fig. 3 presents the

errors in satisfaction of the NABC (5) suffered by the forward-

and backward- propagating Floquet modes, also referred to as
the outgoing and incoming modes, and those incurred in the

central difference approximation of the Helmholtz equation

by the outgoing Floquet modes. The errors are plotted as

functions of the mode order n. Here, the boundary condition

is designed to absorb the outgoing Floquet modes ranging

between iV1 = –2 and Nz = 2, at z = h = 0.2A, for a mesh
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Fig. 2. A unit cell of a perfectly conducting (PEC) strip grating.
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Fig. 3. Errors in satisfying the NABC and the FD scheme by various Floquet
modes.

with A = 0.05A. For the outgoing modes of orders In I > 3,

the error in the NABC. is comparable with the discretization

error. The high errors associated with the incoming Floquet

modes demonstrate the ability of the NABC to suppress the

spurious solutions associated with these modes.

Fig. 4 illustrates the convergence of the finite difference

solution, derived by using the NABC developed in this paper,

as a function of the mleSh size. Also shown in this figure is

the effect of the selection of N1 and N2 in the boundary

condition on the accuracy of the solution. We have investigated

three different choices of the combination of N1 and N2,
viz., –Nl = N2 = O, 1,2, for the solution domain truncated

at h = 0.2~. It is evident that for both –N1 = Nz = 1

and –Nl = N2 = 2, the computed reflection coefficient

approaches the Wiener-Hopf result as the mesh size A -+ O.

In contrast, a boundary condition absorbing only the zeroth-

order mode is clearly inaccurate for the truncation distance
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Fig. 4. Power reflection coefficient versus A obtained with various values
of –N1 = iV2 for the case of d = 0.8A, w = 0.4A, and 00 = 0° with
h = 0.2X

h = 0.2A. Next, we consider the effect of using the ‘discrete’

Floquet modes with the dispersion relationship given by (9) in

deriving the NABC. To this end, we compare the accuracy of

the results obtained by using the NABC based on the discrete

modes, with the corresponding continuous mode results. Plots

of the power conservation error vs. h computed for three cases,

viz., –Nl = N2 = O, 1,2, are presented in Fig. 5 for ‘discrete’

and ‘continuous’ modes. The NABC based on the discrete

modes is clearly more accurate than its continuous counterpart

for –Nl = N2 = 1,2, and the choice of –Nl = Nz = 2 with

discrete modes is obviously the most accurate. In fact, this

choice allows the truncation distance h of the boundary of the

computational domain to be as close as O.1A, while –Nl =

Nz = 1 produces satisfactory accuracy only for h > 0.2A It

is interesting to note that when more continuous modes are

used, the choice of –Nl = N2 = 2 over – N1 = Nz = 1

does not improve the accuracy of the results. Clearly, the

boundary condition based upon the absorption of only the

zeroth-order mode (i.e. the choice – N1 = N2 = O) is not

affected by the type of Floquet mode employed, and requires

the discretization of an excessively large computation domain

to achieve accurate results.

In the previous example which dealt with the case of

normal incidence, it was only natural to select N1 and Nz

symmetrically around O. We now consider a grating with a

period of d = 1.6A and a strip width of w = 0.8A illuminated

at 130 = 60°. The normalized power reflection coefficient for

this structure is plotted in Fig. 6 as a function of h for two

combinations of (NI, Nz), viz., (i) N1 = – 2, N2 = 2; and (ii)

N1 = –3, Nz = 1. Since the computational effort is the same

for both of these two cases, the latter choice is the preferable
one. This result could be predicted if one notes that the n = – 3

mode is evanescent but decays relatively slowly away from the

excitation, while the n = 2 mode is highly evanescent. Thus,

it is necessary to enforce the absorption of only the former

mode to obtain an efficient boundary condition, because the

latter is sufficiently attenuated before reaching the truncation
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Fig. 5. Power conservation error versus h for the case of d = O.8A,
w = 0.4A, and (3o = 0° with A = 0.05A computed with NABC using
the discrete modes with (a) --N1 = N2 = 2, (b) –N1 = Nz = 1, (c)
–Nl = N2 = O and the continuous modes with (d) –Nl = N2 = 2, (e)

–N1 = Nz = 1, (f) –NI = Nz = O.

0.61

0,, L _J~.~d
0.1 0.15 0.2 0.25 0,3 0.35 0.4 0.45 0.5

hlk

Fig. 6. Power reflection coefficient versus h for the case of d = 1.6A,
w = 0.8A, and @O = 60° computed with A = 0.02k

boundary. On the basis of the numerical experiments, we have

derived the guideline thak the NABC should include all of the

propagating modes and at least one evanescent mode on each

side of the spectrum.

IV. DISCUSSION

A new approach to deriving a numerical absorbing boundary

condition (NABC) for mesh truncation in the FD/FEM analysis

of scattering and radiation by periodic structures has been

presented in this paper. The NABC is obtained by imposing

the absorption condition on a selected set of Floquet modes at

the truncation boundary. Unlike the boundary element method,
the proposed approach preserves the sparsity of the FD/F13M

matrices. The accuracy of the method has been demonstrated

for a number of 2D-TM examples. Extensions of the present

formulation to the TE polarization case and to the full 3D

formulation are currently under investigation and the initial

results look quite promising.
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