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A Numerical Absorbing Boundary Condition
for Finite Difference and Finite Element
Analysis of Open Periodic Structures

Amir Boag and Raj Miitra

Abstract—In this paper we present a novel approach to deriving
local boundary conditions, that can be employed in conjunction
with the Finite Difference/Finite Element Methods (FD/FEM)
to solve electromagnetic scattering and radiation problems in-
volving periodic structures. The key step in this approach is to
derive linear relationships that link the value of the field at a
boundary grid point to those at the neighboring points. These
linear relationships are identically satisfied not only by all of the
propagating Floquet modes but by a few of the leading evanescent
ones as well. They can thus be used in lieu of absorbing boundary
conditions (ABCs) in place of the usual FD/FEM equations for
the boundary points. Guidelines for selecting the orders of the
evanescent Floquet modes to be absorbed are given in the paper.
The present approach not only provides a simple way to derive
an accurate boundary condition for mesh truncation, but also
preserves the banded structure of the FD/FEM matrices. The
accuracy of the proposed method is verified by using an internal
check and by comparing the numerical results with the analytic
solution for perfectly conducting strip gratings.

I. INTRODUCTION

NALYSIS of electromagnetic scattering and radiation

by relatively simple periodic structures is conveniently
formulated by using such techniques as the Method of Mo-
ments (MoM) [1]. or the Current Model Method [2], where
the radiation condition is inherently satisfied. However, the
Finite Difference/Finite Element Methods (FD/FEM) are often
preferred over the MoM approach for problems involving
inhomogeneous materials or complex geometries. The use of
these methods for periodic structures requires one to couple,
explicitly, the FD/FEM computational domain to the un-
bounded free space external to the FD/FEM mesh region. The
FD/FEM solution can either be matched to the Floquet mode
expansion [3], or be combined with the MoM to satisfy the
radiation condition [4]. Both ways lead to non-local boundary
conditions that are exact, albeit at the expense of spoiling the
sparsity of the matrices generated in these formulations.

The local type of boundary conditions conventionally em-
ployed in the FD/FEM analysis of non-periodic structures such
as Bayliss-Turkel [5] and Engquist-Majda [6], are not very
well-suited for periodic geometries. Typically, the periodic
structures of interest have cell sizes that are either smaller
than, or comparable to, the wavelength of the illuminating
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field. Thus, the field radiated or scattered by such a structure
consists of a limited number of propagating and an infinite
series of evanescent Floquet modes. For waveguide problems,
Bayliss and Turkel [7] have proposed a boundary condition
designed to absorb all of the propagating waveguide modes.
At any finite distance away from the inhomogencous region,
only a typically small number of the dominant evanescent
modes produce a non-negligible contribution. In this paper,
we introduce a numerical absorbing boundary condition that
effects a complete absorption of all of the significant Floquet
modes impinging upon the boundary, including both the
propagating and the dominant evanescent modes. Using this
requirement as the specification, we go on to derive linear
relationships that link the field values at the boundary grid
points to those of their neighbors. This procedure differs
from the classical approaches to deriving the local boundary
conditions, since in this method only the field values at the
prescribed grid points are used. In this respect, it is somewhat
similar to the measured equation of invariance (MEI) boundary
condition [8]. However, as in [7], and in contrast to the MEI
method, the present method uses the Floquet modes which
depend only upon the periodicity and the excitation, and not
on the geometry of the periodic element. This has an important
advantage of using simple and analytically-known functions,
and eliminating the need to carry out the surface integrations
needed in other approaches.

The two-dimensional (2D), transverse magnetic (TM) po-
larization case is presented in this paper to illustrate the
application of the proposed method. Because of space limi-
tations, the dual case of transverse electric (TE) polarization,
as well as the extension to the three-dimensional (3D) cases,
will be deferred until forthcoming publications.

II. FORMULATION

We consider a two-dimensional (2D) periodic structure
whose geometry and the relevant coordinate system is depicted
in Fig. 1. The structure is periodic along the z-axis, its period
is d. and it is uniform along the y-axis. The excitation is
TM (transverse-magnetic relative to the y-axis) and quasi-
periodic, with a constant phase shift of kdsinfy between
neighboring unit cells. Here, % is the free space wavenumber,
and @y is the scan angle in the phased array problem and
the angle of incidence in the grating scattering case. The
harmonic time dependence ¢’*! is implicit. It is well-known
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that the problem domain can be reduced to a single unit cell
by introducing the phase shift walls. We consider the problem
of truncating the domain of discretization in the positive z-
direction at a distance z = h. (Truncation of the domain in the
negative z direction can be treated as a mirror image of the
problem discussed in this Section.) It is assumed that all of
the inhomogeneities are confined within the region z < Zmax-.
A procedure for truncating the mesh at the boundary z = A
by using a numerical absorbing boundary condition (NABC)
will be presented below. The NABC provides the requisite
equations in the FD/FEM formulation that serve to replace the
corresponding equations at the grid points on the boundary
z = h. The fields in the homogeneous region z > zZmax can
be expressed as a superposition of outgoing Floquet modes
derivable from the y-component of the electric field E,, which
is given by

E,= Y anBy (1)
where
Eypy = eI (benztkonz) )

is the electric field of the nth Floguet mode and a, denotes
its amplitude. In (2), '

2
kyn = ksinfy + % ®)
and
kzn =V k.Z - k%n’ R‘e{kzn} Z 0’ Im{kzn} S 0 (4)

are, respectively,‘the z and z components of the wavevector
of the nth Floquet mode.

The problem geometry and an arrangement of grid points for deriving the NABC.

In the proposed procedure, we derive a linear relationship
between the values of the field at a sets of grid points that are
located on or near the truncation boundary. Consider a set of
L points r; with 4 = 1,..., L. A possible arrangement of the
points for the case of L = 6, that is suitable for a rectangular
mesh, is shown in Fig. 1. Ideally, we would like to find the
coefficients c;, with 4 = 1,..., L, such that they satisty the
relationship

L
> eiBy(r;) =0 (5)
g=1

Since in conventional phased arrays, and in frequency selective
surface (FSS) applications, the period d is typically less than
A, the higher-order Floquet modes are expected to be highly
evanescent. Thus, we can effectively limit our attention to the
L — 1 modes of orders n. = Ni,...,No, where Ny — N} =
L — 2, that suffer from the least attenuation. The requiren'lent
that (5) be satisfied for these L — 1 modes can be expressed
in the matrix form

Uc=0 6)

where ¢ is an L-element column vector of the sought-for
coefficients and

Eyn, (r1) Eyn (rr)

U= Q)

Ey N, (r1) Ey N, (rr)

is a L — 1 by L matrix of the values of the L — 1 selected
modes at the L points. Clearly, one of the components of ¢
can be chosen arbitrarily. Thus, if we let ¢; = 1, the solution
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for ¢ can be written as

c= [_V\}_lv} ®)

where v is the first column of U, and W is a square L — 1
by L — 1 matrix containing L — 1 last columns of U.

In general, this procedure can be repeated for every point on
the boundary. If the grid in the layer adjacent to the boundary
is uniform, the same coefficients ¢ can be used for all the
boundary points. In the uniform grid case, the NABC can be
further improved by using the ‘discrete’ Floquet modes with
the corrected dispersion relation

- -i—acos (2 - (kA)2/2 = cos(ksndd)),
Re{k.n} >0, Im{k,n} <0 ©)

in place of (4), where A denotes the mesh size. With this
modification, a complete absorption of all of the L — 1
Floquet modes under consideration will be guaranteed. Note
that dispersion relation (9) was derived by substituting Floquet
mode expression (2) into the central difference approximation
of the Helmholtz equation. It can be easily modified to accom-

modate a rectangular mesh or an alternative discretization of

Maxwell’s equations on a regular grid.

III. NUMERICAL RESULTS

The formulation presented in the preceding section has
been implemented in a finite-difference computer program.
For the sake of illustrating the application of the proposed
method, we consider a perfectly conducting strip grating,
whose geometry, and that of the coordinate system used, are
depicted in Fig. 2. The grating is illuminated by a plane wave
Einc = g=ik(esinfo+zcosto) Qur objective is to determine the
scattered field E) . The excitation is provided by imposing the
Dirichlet boundary condition Ej = .—Ei™ on the perfectly
conducting surface of the strip. The solution domain is trun-
cated at z = +h. The accuracy of the proposed method is
verified by comparing our numerical results with the analytic
solution. The error in the conservation of the power flow along
the z axis, defined in [2], also serves as an internal accuracy
check.

The first example considered is that of a grating with a
period d = 0.8}, and a strip width of w = 0.4}, illuminated
by a plane wave incident at an angle 8, = 0°. This problem
has been employed to test various numerical methods [9]
against the analytic solution derivable by using the Wiener-
Hopf technique [10]. Before proceeding to the solution of
the scattering problem, it would be desirable to examine
the accuracy of the NABC compared to that of the FD
discretization of the Helmholtz equation. Fig. 3 presents the
errors in satisfaction of the NABC (5) suffered by the forward-
and backward- propagating Floquet modes, also referred to as
the outgoing and incoming modes, and those incurred in the
central difference approximation of the Helmholtz equation
by the outgoing Floquet modes. The errors are plotted as
functions of the mode order n. Here, the boundary condition
is designed to absorb the outgoing Floquet modes ranging
between N1 = —2 and Ny = 2, at z = h = 0.2}, for a mesh

PEC strip

Phase shift walls

Absorbing boundaries

Fig. 2. A unit cell of a perfectly conducting (PEC) strip grating.
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Fig. 3. bErrors in satisfying the NABC and the FD scheme by various Floquet
modes.

with A = 0.05\. For the outgoing modes of orders |n| > 3,
the error in the NABC is comparable with the discretization
error. The high errors associated with the incoming Floquet
modes demonstrate the ability of the NABC to suppress the
spurious solutions associated with these modes.

‘Fig. 4 illustrates the convergence of the finite difference
solution, derived by using the NABC developed in this paper,
as a function of the mesh size. Also shown in this figure is
the effect of the selection of N; and Ny in the boundary
condition on the accuracy of the solution. We have investigated
three different choices of the combination of N7 and N,
viz., —IN; = Nz = 0,1, 2, for the solution domain truncated
at h = 0.2)\. It is evident that for both —N; = Ny = 1
and —N; = N = 2, the computed reflection coefficient
approaches the Wiener-Hopf result as the mesh size A — 0.
In contrast, a boundary condition absorbing only the zeroth-
order mode is clearly inaccurate for the truncation distance
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Fig. 4. Power reflection coefficient versus A obtained with various values
of —N; = Ns for the case of d = 0.8X, w = 0.4, and 6y = 0° with
h = 0.2Xx .

h = 0.2\. Next, we consider the effect of using the ‘discrete’
Floquet modes with the dispersion relationship given by (9) in
deriving the NABC. To this end, we compare the accuracy of
the results obtained by using the NABC based on the discrete
modes, with the corresponding continuous mode results. Plots
of the power conservation error vs. h computed for three cases,
viz., —N1.= N2 = 0, 1, 2, are presented in Fig. 5 for ‘discrete’
and ‘continuous’ modes. The NABC based on the discrete
modes is clearly more accurate than its continuous counterpart
for —N; = Ny = 1,2, and the choice of —N; = Ny = 2 with
discrete modes is obviously the most accurate. In fact, this
choice allows the truncation distance & of the boundary of the
computational domain to be as close as 0.1\, while =N} =
Ny = 1 produces satisfactory accuracy only for A > 0.2A. It
is interesting to note that when more continuous modes are
used, the choice of —N; = Ny = 2 over —N; = Ny = 1
does not improve the accuracy of the results. Clearly, the
boundary condition based upon the absorption of only the
zeroth-order mode (i.e. the choice —N; = Ny = 0) is not
affected by the type of Floquet mode employed, and requires
the discretization of an excessively large computation domain
to achieve accurate results.

In the previous example which dealt with the case of
normal incidence, it was only natural to select N; and No
symmetrically around 0. We now consider a grating with a
period of d = 1.6 and a strip width of w = 0.8)\, illuminated
at o = 60°. The normalized power reflection coefficient for
this structure is plotted in Fig. 6 as a function of h for two
combinations of (N1, No), viz., (i) Ny = —2, N3 = 2; and (ii)
Ny = —3, Ny = 1. Since the computational effort is the same
for both of these two cases, the latter choice is the preferable
one. This result could be predicted if one notes that the n = —3
mode is evanescent but decays relatively slowly away from the
excitation, while the » = 2 mode is highly evanescent. Thus,
it is necessary to enforce the absorption of only the former
mode to obtain an efficient boundary condition, because the
latter is sufficiently attenuated before reaching the truncation
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Fig. 5. Power conservation error versus h for the case of d = 0.8A,

w = 0.4A, and 69 = 0° with A = 0.05A computed with NABC using
the discrete modes with (@) —-N13 = No = 2, (b) —=N1 = No = 1, (¢)

—N3; = Ng = 0 and the continuous modes with (d) —N1. = Na = 2, (e)
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Fig. 6. Power reflection coefficient versus h for the case of d = 1.6,
w = 0.8, and 69 = 60° computed with A = 0.02A.

boundary. On the basis of the numerical experiments, we have
derived the guideline that the NABC should include all of the
propagating modes and at least one evanescent mode on each
side of the spectrum.

IV. DiISCUSSION

A new approach to deriving a numerical absorbing boundary
condition (NABC) for mesh truncation in the FD/FEM analysis
of scattering and radiation by periodic structures has been
presented in this paper. The NABC is obtained by imposing
the absorption condition on a selected set of Floquet modes at
the truncation boundary. Unlike the boundary element method,
the proposed approach preserves the sparsity of the FD/FEM
matrices. The accuracy of the method has been demonstrated
for a number of 2D-TM examples. Extensions of the present
formulation to the TE polarization case and to the full 3D
formulation are currently under investigation and the initial
results look quite promising.
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